|
|
|
Issue #199
THE ML ENGINEER 🤖
|
|
|
|
|
|
|
If you like the content please support the newsletter by sharing with your friends via 🐦 Twitter, 💼 Linkedin and 📕 Facebook!
|
|
|
|
|
|
|
This week in the MLE #199:
If you would like to suggest articles, ideas, papers, libraries, jobs, events or provide feedback just hit reply or send us an email to a@ethical.institute! We have received a lot of great suggestions in the past, thank you very much for everyone's support!
|
|
|
|
|
|
|
|
The MLOps ecosystem continues to evolve at breakneck speed with tools coming out at equal speed. The AI Infrastructure alliance has released a fantastic resource that maps the ecosystem of MLOps tools together with the capabilities, limitations and features of each of the tools, providing a central resource when evaluating different tools.
|
|
|
|
|
|
|
RecSys 2022 was held from 18th - 23rd September in Seattle. There were 50% more industry submissions relative to 2021, and 260% more relative to 2020. This article provides a fantastic overview of key papers and lessons learned from this year's event.
|
|
|
|
|
|
|
Building quality recommendations and personalizations requires delicately balancing what is already known about users while recommending new things that they might like. As one of the largest drivers of DoorDash’s business, the homepage contributes a significant portion of their total conversions. This article provides a practical insight on recommendations at Doordash with Exploration and Exploitation.
|
|
|
|
|
|
|
Best practice in large scale architectures is key for scaling MLOps systems. The Google Architecture Framework is a fantastic resource that contains best practices for architecture design, including a set of principles as well as practical case studies and examples.
|
|
|
|
|
|
|
Matrix multiplication is the most used mathematical operation in all of science and engineering. Speeding this up has massive consequences. Thus, over the years, this operation has become more and more optimized. A fascinating discovery was made when it was shown that one actually needs less than N^3 multiplication operations to multiply to NxN matrices and this video provides an intuitive explanation of the accompanying paper.
|
|
|
|
|
|
|
|
|
Upcoming MLOps Events
The MLOps ecosystem continues to grow at break-neck speeds, making it ever harder for us as practitioners to stay up to date with relevant developments. A fantsatic way to keep on-top of relevant resources is through the great community and events that the MLOps and Production ML ecosystem offers. This is the reason why we have started curating a list of upcoming events in the space, which are outlined below.
Conferences we'll be speaking at:
Other relevant upcoming MLOps conferences:
|
|
|
|
|
|
|
Check out the fast-growing ecosystem of production ML tools & frameworks at the github repository which has reached over 10,000 ⭐ github stars. We are currently looking for more libraries to add - if you know of any that are not listed, please let us know or feel free to add a PR. Four featured libraries in the GPU acceleration space are outlined below.
- Kompute - Blazing fast, lightweight and mobile phone-enabled GPU compute framework optimized for advanced data processing usecases.
- CuPy - An implementation of NumPy-compatible multi-dimensional array on CUDA. CuPy consists of the core multi-dimensional array class, cupy.ndarray, and many functions on it.
- Jax - Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more
- CuDF - Built based on the Apache Arrow columnar memory format, cuDF is a GPU DataFrame library for loading, joining, aggregating, filtering, and otherwise manipulating data.
If you know of any open source and open community events that are not listed do give us a heads up so we can add them!
|
|
|
|
|
|
|
As AI systems become more prevalent in society, we face bigger and tougher societal challenges. We have seen a large number of resources that aim to takle these challenges in the form of AI Guidelines, Principles, Ethics Frameworks, etc, however there are so many resources it is hard to navigate. Because of this we started an Open Source initiative that aims to map the ecosystem to make it simpler to navigate. You can find multiple principles in the repo - some examples include the following:
- MLSecOps Top 10 Vulnerabilities - This is an initiative that aims to further the field of machine learning security by identifying the top 10 most common vulnerabiliites in the machine learning lifecycle as well as best practices.
- AI & Machine Learning 8 principles for Responsible ML - The Institute for Ethical AI & Machine Learning has put together 8 principles for responsible machine learning that are to be adopted by individuals and delivery teams designing, building and operating machine learning systems.
- An Evaluation of Guidelines - The Ethics of Ethics; A research paper that analyses multiple Ethics principles.
- ACM's Code of Ethics and Professional Conduct - This is the code of ethics that has been put together in 1992 by the Association for Computer Machinery and updated in 2018.
|
|
|
|
|
|
|
© 2018 The Institute for Ethical AI & Machine Learning
|
|
|
|